OKLAHOMA STATE UNIVERSITY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECEN 4413
Automatic Control Systems
Spring 2005
Midterm Exam \#1

Choose any four out of five problems.
Please specify which four listed below to be graded:

1) \qquad ; 2) \qquad ; 3) \qquad ; 4) \qquad ;

Name : \qquad

Student ID: \qquad

E-Mail Address: \qquad

Problem 1:

The differential equation given below represents a linear time-invariant system, where $r(t)$ denotes the input and $y(t)$ the output. Find the transfer function, $Y(s) / R(s)$.

$$
\frac{d^{3} y(t)}{d t^{3}}+10 \frac{d^{2} y(t)}{d t^{2}}+2 \frac{d y(t)}{d t}+y(t)+2 \int_{0}^{t} y(\tau) d \tau=\frac{d r(t)}{d t}+2 r(t)
$$

Problem 2:

Using block diagram reduction technique to rearrange the following block diagram into the equivalent H and G configurations of the feedback control system shown below.

G Configuration

Problem 3:

Apply the gain formula to the SFG shown below to find the transfer functions of $\left.\frac{Y_{6}}{Y_{1}}\right|_{Y_{7}=0}$ and $\left.\frac{Y_{6}}{Y_{7}}\right|_{Y_{1}=0}$.

Problem 4:

Figure below shows the block diagram of a dc-motor control system (note the dc-motor is represented by $\left.G(s)=\frac{K(s+3)}{s(s+1)(s+2)}\right)$. The signal $N(s)$ denotes the frictional torque at the motor shaft.
a) Find the transfer function $H(s)$ so that the output $Y(s)$ is not affected by the disturbance torque $N(s)$.
b) With $H(s)$ as determined in part a), find the value of K so that the steady-state value of $e(t)$ is equal to 0.1 when the input is a unit-ramp function, $r(t)=t u(t)$ and $N(s)=0$. Apply the final-value theorem.

Problem 5:

For the system described by input-output differential equation given below,

$$
c \dddot{y}=(a+1) y+\dot{y}-b \ddot{y}+2 u+\dot{u}+\ddot{u},
$$

find the state space representation in the form of

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+b u(t), \\
& y(t)=c x(t)+d u(t),
\end{aligned}
$$

where input is $u(t)$ and output is $y(t)$.

